(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

a(s(x1)) → s(s(s(p(s(b(p(p(s(s(x1))))))))))
b(s(x1)) → s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))
c(s(x1)) → p(s(p(s(a(p(s(p(s(x1)))))))))
p(p(s(x1))) → p(x1)
p(s(x1)) → x1

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

a(s(z0)) → s(s(s(p(s(b(p(p(s(s(z0))))))))))
b(s(z0)) → s(s(s(p(p(s(s(c(p(s(p(s(z0))))))))))))
c(s(z0)) → p(s(p(s(a(p(s(p(s(z0)))))))))
p(p(s(z0))) → p(z0)
p(s(z0)) → z0
Tuples:

A(s(z0)) → c1(P(s(b(p(p(s(s(z0))))))), B(p(p(s(s(z0))))), P(p(s(s(z0)))), P(s(s(z0))))
B(s(z0)) → c2(P(p(s(s(c(p(s(p(s(z0))))))))), P(s(s(c(p(s(p(s(z0)))))))), C(p(s(p(s(z0))))), P(s(p(s(z0)))), P(s(z0)))
C(s(z0)) → c3(P(s(p(s(a(p(s(p(s(z0))))))))), P(s(a(p(s(p(s(z0))))))), A(p(s(p(s(z0))))), P(s(p(s(z0)))), P(s(z0)))
P(p(s(z0))) → c4(P(z0))
S tuples:

A(s(z0)) → c1(P(s(b(p(p(s(s(z0))))))), B(p(p(s(s(z0))))), P(p(s(s(z0)))), P(s(s(z0))))
B(s(z0)) → c2(P(p(s(s(c(p(s(p(s(z0))))))))), P(s(s(c(p(s(p(s(z0)))))))), C(p(s(p(s(z0))))), P(s(p(s(z0)))), P(s(z0)))
C(s(z0)) → c3(P(s(p(s(a(p(s(p(s(z0))))))))), P(s(a(p(s(p(s(z0))))))), A(p(s(p(s(z0))))), P(s(p(s(z0)))), P(s(z0)))
P(p(s(z0))) → c4(P(z0))
K tuples:none
Defined Rule Symbols:

a, b, c, p

Defined Pair Symbols:

A, B, C, P

Compound Symbols:

c1, c2, c3, c4

(3) CdtUnreachableProof (EQUIVALENT transformation)

The following tuples could be removed as they are not reachable from basic start terms:

P(p(s(z0))) → c4(P(z0))

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

a(s(z0)) → s(s(s(p(s(b(p(p(s(s(z0))))))))))
b(s(z0)) → s(s(s(p(p(s(s(c(p(s(p(s(z0))))))))))))
c(s(z0)) → p(s(p(s(a(p(s(p(s(z0)))))))))
p(p(s(z0))) → p(z0)
p(s(z0)) → z0
Tuples:

A(s(z0)) → c1(P(s(b(p(p(s(s(z0))))))), B(p(p(s(s(z0))))), P(p(s(s(z0)))), P(s(s(z0))))
B(s(z0)) → c2(P(p(s(s(c(p(s(p(s(z0))))))))), P(s(s(c(p(s(p(s(z0)))))))), C(p(s(p(s(z0))))), P(s(p(s(z0)))), P(s(z0)))
C(s(z0)) → c3(P(s(p(s(a(p(s(p(s(z0))))))))), P(s(a(p(s(p(s(z0))))))), A(p(s(p(s(z0))))), P(s(p(s(z0)))), P(s(z0)))
S tuples:

A(s(z0)) → c1(P(s(b(p(p(s(s(z0))))))), B(p(p(s(s(z0))))), P(p(s(s(z0)))), P(s(s(z0))))
B(s(z0)) → c2(P(p(s(s(c(p(s(p(s(z0))))))))), P(s(s(c(p(s(p(s(z0)))))))), C(p(s(p(s(z0))))), P(s(p(s(z0)))), P(s(z0)))
C(s(z0)) → c3(P(s(p(s(a(p(s(p(s(z0))))))))), P(s(a(p(s(p(s(z0))))))), A(p(s(p(s(z0))))), P(s(p(s(z0)))), P(s(z0)))
K tuples:none
Defined Rule Symbols:

a, b, c, p

Defined Pair Symbols:

A, B, C

Compound Symbols:

c1, c2, c3

(5) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)

Removed 11 trailing tuple parts

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

a(s(z0)) → s(s(s(p(s(b(p(p(s(s(z0))))))))))
b(s(z0)) → s(s(s(p(p(s(s(c(p(s(p(s(z0))))))))))))
c(s(z0)) → p(s(p(s(a(p(s(p(s(z0)))))))))
p(p(s(z0))) → p(z0)
p(s(z0)) → z0
Tuples:

A(s(z0)) → c1(B(p(p(s(s(z0))))))
B(s(z0)) → c2(C(p(s(p(s(z0))))))
C(s(z0)) → c3(A(p(s(p(s(z0))))))
S tuples:

A(s(z0)) → c1(B(p(p(s(s(z0))))))
B(s(z0)) → c2(C(p(s(p(s(z0))))))
C(s(z0)) → c3(A(p(s(p(s(z0))))))
K tuples:none
Defined Rule Symbols:

a, b, c, p

Defined Pair Symbols:

A, B, C

Compound Symbols:

c1, c2, c3

(7) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace A(s(z0)) → c1(B(p(p(s(s(z0)))))) by

A(s(x0)) → c1(B(p(s(x0))))

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

a(s(z0)) → s(s(s(p(s(b(p(p(s(s(z0))))))))))
b(s(z0)) → s(s(s(p(p(s(s(c(p(s(p(s(z0))))))))))))
c(s(z0)) → p(s(p(s(a(p(s(p(s(z0)))))))))
p(p(s(z0))) → p(z0)
p(s(z0)) → z0
Tuples:

B(s(z0)) → c2(C(p(s(p(s(z0))))))
C(s(z0)) → c3(A(p(s(p(s(z0))))))
A(s(x0)) → c1(B(p(s(x0))))
S tuples:

B(s(z0)) → c2(C(p(s(p(s(z0))))))
C(s(z0)) → c3(A(p(s(p(s(z0))))))
A(s(x0)) → c1(B(p(s(x0))))
K tuples:none
Defined Rule Symbols:

a, b, c, p

Defined Pair Symbols:

B, C, A

Compound Symbols:

c2, c3, c1

(9) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace B(s(z0)) → c2(C(p(s(p(s(z0)))))) by

B(s(x0)) → c2(C(p(s(x0))))

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

a(s(z0)) → s(s(s(p(s(b(p(p(s(s(z0))))))))))
b(s(z0)) → s(s(s(p(p(s(s(c(p(s(p(s(z0))))))))))))
c(s(z0)) → p(s(p(s(a(p(s(p(s(z0)))))))))
p(p(s(z0))) → p(z0)
p(s(z0)) → z0
Tuples:

C(s(z0)) → c3(A(p(s(p(s(z0))))))
A(s(x0)) → c1(B(p(s(x0))))
B(s(x0)) → c2(C(p(s(x0))))
S tuples:

C(s(z0)) → c3(A(p(s(p(s(z0))))))
A(s(x0)) → c1(B(p(s(x0))))
B(s(x0)) → c2(C(p(s(x0))))
K tuples:none
Defined Rule Symbols:

a, b, c, p

Defined Pair Symbols:

C, A, B

Compound Symbols:

c3, c1, c2

(11) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace C(s(z0)) → c3(A(p(s(p(s(z0)))))) by

C(s(x0)) → c3(A(p(s(x0))))

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

a(s(z0)) → s(s(s(p(s(b(p(p(s(s(z0))))))))))
b(s(z0)) → s(s(s(p(p(s(s(c(p(s(p(s(z0))))))))))))
c(s(z0)) → p(s(p(s(a(p(s(p(s(z0)))))))))
p(p(s(z0))) → p(z0)
p(s(z0)) → z0
Tuples:

A(s(x0)) → c1(B(p(s(x0))))
B(s(x0)) → c2(C(p(s(x0))))
C(s(x0)) → c3(A(p(s(x0))))
S tuples:

A(s(x0)) → c1(B(p(s(x0))))
B(s(x0)) → c2(C(p(s(x0))))
C(s(x0)) → c3(A(p(s(x0))))
K tuples:none
Defined Rule Symbols:

a, b, c, p

Defined Pair Symbols:

A, B, C

Compound Symbols:

c1, c2, c3

(13) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace A(s(x0)) → c1(B(p(s(x0)))) by

A(s(z0)) → c1(B(z0))

(14) Obligation:

Complexity Dependency Tuples Problem
Rules:

a(s(z0)) → s(s(s(p(s(b(p(p(s(s(z0))))))))))
b(s(z0)) → s(s(s(p(p(s(s(c(p(s(p(s(z0))))))))))))
c(s(z0)) → p(s(p(s(a(p(s(p(s(z0)))))))))
p(p(s(z0))) → p(z0)
p(s(z0)) → z0
Tuples:

B(s(x0)) → c2(C(p(s(x0))))
C(s(x0)) → c3(A(p(s(x0))))
A(s(z0)) → c1(B(z0))
S tuples:

B(s(x0)) → c2(C(p(s(x0))))
C(s(x0)) → c3(A(p(s(x0))))
A(s(z0)) → c1(B(z0))
K tuples:none
Defined Rule Symbols:

a, b, c, p

Defined Pair Symbols:

B, C, A

Compound Symbols:

c2, c3, c1

(15) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

C(s(x0)) → c3(A(p(s(x0))))
A(s(z0)) → c1(B(z0))
We considered the (Usable) Rules:

p(s(z0)) → z0
And the Tuples:

B(s(x0)) → c2(C(p(s(x0))))
C(s(x0)) → c3(A(p(s(x0))))
A(s(z0)) → c1(B(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(A(x1)) = [3] + [2]x1   
POL(B(x1)) = [4] + [2]x1   
POL(C(x1)) = [4] + [2]x1   
POL(c1(x1)) = x1   
POL(c2(x1)) = x1   
POL(c3(x1)) = x1   
POL(p(x1)) = x1   
POL(s(x1)) = [4] + x1   

(16) Obligation:

Complexity Dependency Tuples Problem
Rules:

a(s(z0)) → s(s(s(p(s(b(p(p(s(s(z0))))))))))
b(s(z0)) → s(s(s(p(p(s(s(c(p(s(p(s(z0))))))))))))
c(s(z0)) → p(s(p(s(a(p(s(p(s(z0)))))))))
p(p(s(z0))) → p(z0)
p(s(z0)) → z0
Tuples:

B(s(x0)) → c2(C(p(s(x0))))
C(s(x0)) → c3(A(p(s(x0))))
A(s(z0)) → c1(B(z0))
S tuples:

B(s(x0)) → c2(C(p(s(x0))))
K tuples:

C(s(x0)) → c3(A(p(s(x0))))
A(s(z0)) → c1(B(z0))
Defined Rule Symbols:

a, b, c, p

Defined Pair Symbols:

B, C, A

Compound Symbols:

c2, c3, c1

(17) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

B(s(x0)) → c2(C(p(s(x0))))
C(s(x0)) → c3(A(p(s(x0))))
Now S is empty

(18) BOUNDS(O(1), O(1))